
h,. .I. Hmr Mars Transfeer. Vol. 9, pp. 508-510. Pergamon Prev 1966. Pnnted ,n Great Br~tam 

THE TRANSPIRATION-COOLED FLAT PLATE WITH VARIOUS THERMAL AND 

VELOCITY BOUNDARY CONDITIONS 

E. M. SPARROW and J. B. STARR 

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 

(Received 14 July 1965 and in revised form 23 December 1965) 

THIS note is concerned with the effect of thermal and velocity 

boundary conditions on the heat-transfer characteristics of 

a transpiration-cooled flat plate. Consideration is given to 

a Iaminar, constant-property boundary-layer flow and a 

transpiring gas whose fluid properties are the same as those 

of the main stream gas. The various cases studied here are 

enumerated below. 

(a) T, = const., 0, - x-+; 

(b) T, = const., t’, = const.; 

(c) qw = const., 0, - x-*; 

(d) 4, = const., a, = const.; 

(e) qw = pt‘,c,(T, - T,), c, = const. 

T, is the temperature of the coolant gas in the supply reser- 

voir behind the porous wall and the other symbols have 

their usual meaning. 

Cases (a) through (d) are self-explanatory; however, Case 

(e) merits some amplification. The thermal boundary con- 

dition represents a balance between the convective heat 

transfer from the boundary layer into the wall and the 

enthalpy rise of the coolant gas as it passes through the 

porous wall. Such a balance is valid when extraneous heat 

losses are negligible. Thus, in Case (e), neither the surface 

temperature T, nor the surface heat flux q* is prescribed; 

rather, these quantities vary along the plate surface in a 

manner consistent with the dynamics of the boundary layer. 

It is believed that the boundary conditions that comprise 

Case(e) correspond most closely to those that can be achieved 

in experiment. 

It is well established that Cases (a) and (c) yield similarity 

solutions of the boundary-layer momentum and energy 

equations, On the other hand, Cases (b), (d), and (e) do not 

possess similarity solutions. For these cases, the velocity 

and heat-transfer solutions are found by a series expansion 

method. For the velocity problem, one defines a stream 

function 

where 

V = Y& J(Re,), p = 2 J(Re,), Re, = !!& (2) 
I 1’ 

rl is the well-known similarity variable and, except for a 

difference in sign and a factor of 2, /I is identical to the con- 

ventional blowing parameter&. The reduced stream function 

fis expressed as a series 

f(a B) = f&I) + Bf(rl) + B%(rl) + P%(V) + (3) 

For the thermal problem, it is convenient to define dimen- 

sionless temperature variables, respectively for Cases (b). 

(d), and (e), as follows 

T, - T 
g=--- 

T, - T T -T 

T, - T,’ 
&!_ 

q,lPc,%’ 
,g = _?.. ~_ 

T, - 7;. 
(4) 

The 9 variable is also expanded in a series 

+ lr3%(V) + 8494(V) + (5) 

The ordinary differential equations governing the functions 
fi(n) and Si(o) are derived by substituting the series into the 
momentum and energy equations. The corresponding 
boundary values are found by applying the boundary con- 

ditions for Cases (b), (d), and (e); in addition, u = 0 at y = 0 

and a --) U, and T + T, as .r + -x. for all cases. Owing to 

space limitations, the detailed derivations will be omitted 

here. 
The heat-transfer results can be expressed in terms of a 

local heat-transfer coefficient and a local Nusselt number 

defined as 

k = q,/(T, - TM.), Nu, = hxik (6) 

in which q, is positive when heat flows from the boundary 

layer into the wall. Nusselt numbers for Case (a) appear In 

the literature (see, for example, reference [I]), while the 
results for the other cases were obtained as part of this in- 

vestigation. 
Table 1 contains a listing of Nu,;~‘(R~,) values for Casts 

(a) and (c); these follow directly from the similarity solutions. 

On the other hand, for Cases (b), (d), and (el, the Nussclt 

numbers are respectively expressed by the following rcla- 

tionships* 

* The primes denote differentiation with respect to 

1. 
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Table 1. Nusselt number results for Cases (a) and 
(c); Pr = 0.7, 

The values of&(O) and S;(O) that are required in the numerical 
evaluation of equations (7) are listed in Table 2. Also listed 
in the table are f y(O) values for the velocity solution. 

2h,P,)&%) Case (a) Case (c) 

0 0.2927 0.4059 
0.1 0.2665 0.3772 
0.2 0.2408 0.3485 
0.3 0.2155 0.3196 
0.5 0.1661 0.2612 
0.7 0.1187 0.2014 
1.0 0.05175 0.1052 

Nu,l,/(Re,) 

= -; [G(O) + /W(O) + /P%(O) + /?39;(0)] 

= ; [9,(O) + L%(O) + B29&0) + pYJ4(o)]-1 

Nu,iJ(Re,) 

Pr 

[ 

1 - W(O) - 829Ao) - P93(0) 

= 2 I* + BMJ + P93(0) + 839,(O) 1 

(7a) 

(7b) 

(7c) 

Table 2. Values of 9(O) and 9’(O), Cases (b), (d), (e); Pr = 0.7 

-9:(o) 9,(O) 

i Case (b) Case (d) Case (e) f I’(0) 

0 0.5854 0 0 1.3282 
1 - 0.4488 0.8623 0.8623 - 1.2243 
2 0.04657 0.462 1 -0.1662 0.1948 
3 0.005822 0.2234 0.00533 0.02822 
4 0.1094 -0.000958 

As is usual in series solutions of boundary layer problems, 
rigorous statements cannot be made about the region of 
convergence ofthe series. For the Nusselt number expressions 
of equations (7), the quantitative contributions of the suc- 
cessive terms of the series were carefully considered. On the 
basis of such an appraisal, the authors felt that it was reason- 
able to evaluate Nusselt number results for Cases (b) and 
(e) for b values as large as unity; on the other hand, for Case 

(d), the evaluation was terminated at /I = 0.7. 

- b: L = CONST, v, = CONST 

c:4, =CONST, v,-x 

().I- d : 4, = CONST, rk = CONST 

e: 9* =pL’+(;T, -F 1, v, = CONST 

OO 
I I I I I I I I I I I I I I I I I I I I _ 
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FIG. 1. Nusselt number results. 
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The Nusseh number results thus obtained are plotted in 

Fig. 1 as a function of the blowing parameter B = 2(u,/U,) 

,/(Re,). It is seen that in all cases, the Nusselt number de- 

creases with increasing blowing rate. For Cases (a) and (b), 

both ofwhich are characterized by T, = const., the numerical 

values of Nu,/J(Re,) are of comparable magnitude for small 

and intermediate values of the blowing parameter; however, 

the deviations grow increasingly larger as the blowing para- 

meter increases. A similar remark applies to the Nu,/J(Re,) 

results for Cases (b), (d), and (e). It is evident that the heat 

transfer results are quite sensitive to the nature of the thermal 

and velocity boundary conditions at the plate surface. 

I I I I 

abscissa with increasing downstream distances. From the 

figure, it is seen that as x approaches zero,* T, approaches 

T, ; that is, the transpiration cooling provides no protection 

of the surface. With increasing values of X, the wall tempera- 

ture departs more and more from ‘I,, tending to approach 

more and more closely to Tc Thus, the surface protection 

provided by transpiration cooling improves with increasing 

downstream distances. This finding suggests that, for practi- 

cal application, it is necessary to design the leading edge so 

that boundary conditions other than those of Case (e) apply 

in that region, In particular, since v, is necessarily finite. a 

reasonable approach would be to provide good paths for 

I I I I I I I 

/ 

FIG. 2. Variation of plate surface temperature, Case (e). 

More detailed consideration will now be given to Case (e) 

which, as previously noted, is believed to correspond most 

closely to boundary conditions that are experimentally 

realistic. Inasmuch as the aim of transpiration cooling is the 

thermal protection of the surface, it is of interest to inquire 

about the surface temperature results. This information has 

been determined by evaluating equation (5) with the aid of 

Table 2. The results thus obtained are presented in Fig. 2. 

The dimensionless surface temperature is plotted on the 
ordinate, while the abscissa is the blowing parameter. 

For purposes of discussion, it is convenient to imagine 

that v, is fixed and to associate increasing values of the 

heat conduction in the wal!. In such an event, heat conduction 

terms would have to be appended to the energy balance that 
was employed for Case (e). This would necessitate simul- 

taneous solution of the boundary-layer problem and the 

heat-conduction problem for the wall. 
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.~.~~~~~ ~~ ~~~ ~~ 
* At x = 0, the boundary-layer assumptions no 

longer hold. 


